COK YONLU DIiZILERIN COKDEGISKENLILIGI YOKSELTILMIS
CARPIMLAR GOSTERILIMI ARACILIGIYLA
AYRISTIRIMI ve UYYGULAMALARI

OZET

Bu savin diizenlenim asamasinda, giiniimiizde yiiksek boyutlu veri ¢oziimleyisinde
(analizinde) ve isleyisinde siklikla kullanilan ¢ok yonlii dizi yapilarimn ayrigtirimi
icin Cokdegigkenliligi Yiikseltilmis Carpimlar Gosterilimi (CYCG) tabanli ayrigtirim
yonteminin uygulanim olanaklar aragtinlmigtir. Cok yonlii dizi, 1-yonlii dizi olarak
tammlayabilecegimiz yoneylerin (vektorler) ve 2-yonlii dizi olarak tanimlayabile-
cegimiz dizeylerin (matrisler) genellestirilmis durumudur. Cok yonlii dizi ayrigtirimi
ise dizey ayrnigtiriminda oldugu gibi, N-yonli bir diziyi her biri 6ziine 6zgii degisik
nitelikleri tasiyacak bigimde ogelere ya da bilesenlere ayirmaktir. Genel olarak
N-yonlii dizilerin ayrigtirim igin cokludogrusal cebir (ing: multilinear algebra) tabanli
yontemler kullanilmaktadir. Sav kapsaminda giindeme alinan ayrigtirm yontemleri ise
sayitcil (istatistiksel) bir agilhim yontemi olan CYCG’ni taban almaktadir. Bir N-yonlii
dizi i¢in CYCG ise N sayida destek yoneyi ve bunlarin diginda bir degismez bilegen,
N sayida 1-yonlii bilesen, N(N —1)/2 sayida 2-yonlii bilesen ve bu bigimde gittikge
artan yonliliigii olan 2N sayida bilesenden olusmaktadir. Kuskusuz, uygulamalarda
bu diizeyde ¢ok bilesen ile galismak sayisal bir indirgeyis saglamayacagindan bu
gosterilimi kesimcil uygulayarak ilgili ¢ok yonlii diziyi en iyi bi¢imde anlatabilen
sayida bilesen kullamlmaktadur.

Sav diizenleyisi kapsaminda CYCG ile ¢ok yonlii dizilerin ayrigtirimi diginda
CYCG tabanh 3 degisik ayngtinm yontemi tiiretilmistir. ~ Bunlardan ilki olan
indirgeyimcil CYCG (I-CYCG), CYCG nin sayitgil (istatiksel) ozelliklerinin yamsira
izgecil ozellikler de tasidigindan melez bir yontem olarak goriilebilir. Bu yontemde,
erekteki (hedefteki) ¢okludizi, iki ¢arpanh toplamlar yapisinda ayngtirihr. Carpimdaki
toplam yon sayist degismemek kosuluyla, carpanlarin her birinde istenilen sayida
yon alinabilir. Ancak, ilk carpanlarda hep es sayida yon bulunmalidir. Buradaki
uygulamalarda, carpanlardan biri yoney (bir yonlii dizi) alinmg ve bdylece diger
carpanda yon sayisi 1 diisiiriilebilmistir. Savda, bu bicimdeki Indirgeyimcil CYCG ¢ok
yonlii dizi yaklagtimminda uygulanmig ve sonuglar1 uygulama boliimiinde verilmigtir.
Yonlerin iki carpana dagitim olgusu essiz degildir. Ustelik, ardigik olarak yon
degisimlerine yol agabilen secimler de giindeme getirilebilmis ve yaklagtirm niteligi
olumlu etkilenebilmigtir.

Obiir agihm yontemlerinden biri olan Kiigiik Olgeklerde CYCG (KO-CYCG) ise
veri kiime’sini altkesimlere ayirarak her bir altkesimde CYCG yontemini uygulayis
goriisiine dayanmaktadr. KO-CYCG yontemi daha kiiciik bir uzamcil alanda
(geometrik bolgede) CYCG’nin daha iyi yakinsay1s saglayacagini kanitlar niteliktedir.
Ayrica bu ilerisiiriimiin dogrulugu goriinti geri ¢atma (ing : image reconstruction)
gibi gercek yasam uygulayislari tizerinde gosterilmistir. Bu yOntem koklerini Sav
Damigmani olan Metin Demiralp’in onderligindeki Bilisim Enstitiisii Bilgisayim Bilimi
ve Yontemleri Toplulugu (BEBBYT) aragtinimlarinda yer alan “Sifir Oylumda CYCG”
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inceleyiglerinden almaktadir. Bu ise “Sifir Oylumda YBBG (Yiiksek Boyutlu Bice
Gosterilim, ing: High Dimensional Model Representation-HDMR)” inceleyislerinin
CYCG uyarlamisidir. Bu aragtinnmlarda, YBBG ya da CYCG’nin iizerine kuruldugu
uzamcil (geometrik) bolgenin uygun bir bicimde dlgeklendiginde ve, dlgegin bolgeyi
noktaya doniistiirecegi bicimde sifira gotiiriiliigiinde, degismezligin sonsuz baskinliga
erisecegi gosterilmistir. Yazarin da bu dogrultuda bir yazisi bulunmaktadir. Bu
baskinlik, “Sifir Oylum Yaklagtirim™ olarak adlandirilan bir ¢izemin (ing: scheme)
CYCG uygulaniglarinda kullanilabilecegini akla getirmis ve savda bu dogrultuda da
adimlar atilmagtir.

Savda kullamlan ve CYCG’nden tiiretilmis ligiinci yontem olan Cokdegiskenliligi
Yiikseltilmigs Carpimlar Uckosegencil Dizey Gosterilimi (CYCGUDG) ise her ne
diizeyde CYCG tabanli olsa da Oziine ozgli Ozyineleyisli bir yapi olarak ortaya
cikmugtir. Dizeylerin dordiil (kare) de olsalar dikdortgen de olsalar, ickdsegencil (ing:
tridiagonal) bir yapiya doniistiiriiliigleri icin gegerli olan ve islerlik diizeyi yiiksek olan
bir ara¢ olarak yapilandirlmustir. CYCUDG’nin ¢ok yonlii dizi aynstirim yontemi
olarak basarimi goriintii geri catis ve yuz goriintiisii irdeleyis (ing : face image
retrieval) sistemi ¢aligmalarinda gozlemlenmistir. Savda bu dogrultuda yeterince
bildirim verilmektedir.

Bu calisma kapsamuinda iiretilen her bir ydntem 6zgiin olup her birinin degisik
alanlardaki bagarimu ilgili cok yonlii dizinin nicel ve nitel 6zelliklerine bagh oldugu
diizeyde kullanilan ayrigtirrm yonteminin niteligine de baghdir. Bu nedenle, ok yonlii
dizi biciminde anlatilabilen bir veri kiime’sinin ayrigtirrmimn nasil yapilacagi sorusu
da aslinda bu ayristiimun bilesenlerinin ya da tiimiiniin ne amagcla kullamlacag ile
ilintilidir. Savda, olgunun bu yanina da &zen gosterimi icin ilgi gekici bir anlatim
sergilenimine ¢abalanmustir.
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MULTI-WAY ARRAY DECOMPOSITION via ENHANCED
MULTIVARIANCE PRODUCT REPRESENTATION
and APPLICATIONS

SUMMARY

The basic focus of this PhD thesis is the Multi-way Array Decomposition which
is frequently used for high dimensional data analysis and processing.  High
dimensionality can be considered in two different ways. First of all very large data
sets can be categorized in high dimensionality. Secondly, matrices which have more
than two directions can be considered as high dimensional and these data sets are
expressed by multi-way data sets or multi-way arrays. A multi-way array can be taken
as generalization of vectors which can be defined 1-way arrays and matrices that can
be defined as 2-way arrays. Generally analyzing or processing a multi-way array needs
a decomposition technique to get clear idea on relationships of different components
or different ways. Decomposition of a multi-way array is to separate a multi-way
array into components such that each of them shows different characteristics. Most of
the recent researchs on the applied sciences shows that matrix decomposition based
methods are insufficient for multi-dimensionality in terms of ways. The underlying
reason is that the matrix based methods do not capture the correlations between
the ways. This causes information loss while analyzing data set with multi-way
structure and it may cause wrong inference. Thus, multi-way array decomposition
is an important area for dimensionality reduction of high dimensional data sets.

Multi-way array decomposition based on Enhanced Multivariance Product Represen-
tation (EMPR) has been kept at the focus in this thesis study. Generally multi-linear
algebra based methods are used for multi-way array decomposition. However for
this study a statistical expansion, EMPR, based methods have been chosen for
decomposing multi-way arrays. EMPR is a generalization of High Dimensional
Model Representation (HDMR). HDMR is proposed by Sobol to represent multivarite
functions with the less variate function components and it’s usage has been pervaded
for different applications. The basic property of HDMR is that the determination of
the components can be accomplished if the geometry is orthogonal. However even
if the geometry is orthogonal HDMR can be still insufficient for the representation.
This kind of situations occur if the target function structure is far from the additivity
because HDMR is purely an additive expansion. That is the reason why EMPR has
been arosen.

The main difference between EMPR and HDMR is the existence of the support terms
of EMPR. Support terms participate in HDMR expansion as multiplication of one-way
arrays. However this participation is done in such a way that all terms have the
same number of ways. The efficiency of support terms has been shown for multi-way
arrays by comparing HDMR and EMPR approximation results on synthetic multi-way
data sets. The results are supported for the conjecture that HDMR works better on
multi-way arrays which have additive structure.
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EMPR for an N-way array comprises 2N additive terms each of which is a product of
an EMPR component with a sufficient number of compatible support arrays. Amongst
the components, one is a scalar which is multiplied by all support arrays to form
the first additive term of EMPR while N number of components are one-way arrays
which are multiplied by the all support arrays except the one depending on the same
independent variable of the relevant component to form the univariate terms. The
number of the bivariate terms is N(N — 1)/2 each of which contains a bivariate
component as the factor and other additive terms contain components with increasing
number of ways. Despite EMPR is an expansion composed of a finite number of
additive terms, this number may be extremely big in the practical applicational sense
when the number of the independent variables grows. Then, certainly this kind of
expansion is needed to be truncated such that it approximates the target multi-way array
in the best approximation quality. This truncation is necessary because in practicasity
a decomposition technique with so many omponents does not provide any efficient
numerical reduction on multi-way data.

Another necessity for the usage of EMPR on multi-way array is to find the optimal
support terms to catch the best approximation with truncation. During the research
of this necessity different kind of methods have been arosen for different kind of
applications. In this manner three different EMPR based decomposition techniques
have been developed apart from EMPR itself for multi-way arrays and they are reported
in this thesis.

First of these methods is Reductive Enhanced Multivariance Product Representation
(R-EMPR), R-EMPR can be regarded as a hybrid method because of it’s spectral
features as well as statistical structure. ~ With Reductive Multilinear Array
Decomposition (RMAD) it is possible to decompose an N-way array into a 1-way
array and (N — 1)-way array by using spectral features of N-way array. However
R-EMPR offers a different utilization of RMAD. R-EMPR uses the 1-way outputs of
RMAD as support terms. This kind of support array determination gives the flexibilty
to algorithm for choosing different combination of RMAD outputs. For example,
support arrays can be changed in accordance with the order of reduced ways. Also
it is possible to design a tree algorithm to choose for best support array determination.
R-EMPR is applied on the approximation problem of multi-way arrays. The multi-way
arrays are chosen from the real chemical experiments and the results are reported on
the applications section.

The second method, Small Scale EMPR, is based on a philosophy such that dividing
the data set into small sub-datasets and applying EMPR on each piece. Small Scale
philosophy was first used for HDMR and quite remarkable results have been produced.
However small scale HDMR was developed for multivariate functions, thus continuous
entries.

This is the first study that implements Small Scale philosophy on multi-way arrays.
The basic idea of Small Scale EMPR is that, on smaller geometries, EMPR (or HDMR)
gets better convergence for constant approximation (Zero degree truncation of EMPR
expansion). According to thisideaa multi-way array has been divided into small pieces
and on each sub-array EMPR has been applied at most first order approximation. After
combining the components of sub-array decompositions then the entire approximation
has been calculated cumulatively. The algorithm’s performance has been shown on
real-life applications such as image reconstruction in this thesis’ relevant sections.
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Third of the developed methods is Tridiagonal Matrix Enhanced Multivariance
Products Representation (TMEMPR). TMEMPR has specific features compared with
the other EMPR based decomposition techniques. First of all, TMEMPR is always
first order approximation because it has been constructed for matrices which are
bivariate entities in elements. Thus the matrix EMPR contains just four additive terms.
However its consecutive use in the decomposition of the residual matrices increases
the number of the additive terms. This recursive scheme stops at the smallest edge of
the rectangularity if the matrix has an empty null space adjoint to the smallest edge.
The resulting decomposition’s kernel matrix is however in a tridiagonal format and
therefore it has been named as Tridiagonal Matrix Enhanced Multivariance Products
Representation.

Despite TMEMPR has been designed for only two-way arrays its utilization can
be extended for multi-way array decomposition and it can be done by using planar
unfoldings of three-way arrays. In this sense it has been focused on the decomposition
of the planarly unfolded three-way arrays with an application on images.

TMEMPR is constructed on the EMPR method base however it’s main properties
are quite different. For example while EMPR terms go to the number of way,
TMEMPR terms can go to the number of small dimensionality of the array. Another
difference between EMPR and TMEMPR is the determination of the components,
EMPR components are found via statistical perspective while TMEMPR uses linear
algebraic methods like matrix-vector multiplications to find the components. In this
theisi we also have studied how to use this new method on the multi-way arrays.
To this end a known transformation technique from multi-way arrays to matrices has
been used. We first unfold the multi-way array and then use TMEMPR, after the
truncation matrix is folded back into the multi-way array we obtain the approximation.
With various application results of the algorithm on multi-way arrays have been
collected by taking the certain three-way data sets which correspond to RGB images.
TMEMPR method has also been used for face image retrieval system for greyscale
image database. The results show the efficiency of TMEMPR is competitive with
Singular Value Decomposition (SVD).

Support arrays play a fundamental role in the approximation quality of EMPR
truncations and therefore TMEMPR truncations. In the case of continuity the target is
a multivariate function and the supports become univariate functions. The construction
of the support entries in both continuous and discrete cases is a serious problem and
is quite nonlinear as we have mentioned a little bit in this study. One of the most
recent research studies in the Demiralp Group (Group for Science and Methods of
Computing) focuses on the support function construction at the zero volume limit
where the all volume element subintervals are taken to zero. This study is in progress
and it is expected that certain splinewise structures seem to be constructed. Until know
we have behaved pragmatically and chosen the support functions mostly as directional
fluctuations.

In the case of TMEMPR, the effect of the support arrays on the tridiagonal kernel
matrices is such that the tridiagonality can be taken away towards diagonal form. This
happens by changing the dominancy of the diagonal elements of the kernel matrix.
In other words, the lower and upper diagonals of the tridiagonal kernel matrix can be
reduced through appropriate choices of support vectors.
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In this study, different divide-and-conquer algorithms have been designed for
decomposition of multi-way arrays which are explained above. The main aim is
to work with less terms and getting more accuracy for different real life data sets.
Designed methods efficiency have been showed on different data sets which come
from different application fields, however a point to be noted is the structure of
data sets, which is as effective as the structure of these designed algorithm. As an
example a statistical expansion may not be appropriate to represent a multi-way data
set which have dominant spectral properties. Therefore these important details are also
considered in this study while developing the decomposition algorithms.

Each of the methods that developed under this study is original and their performance
is related to the field that they are used, the quantitative and qualitative characteristics
of the multi-way array and the main properties of the decomposition technique. Thus
the question that how is it possible to decompose and reduce a multi-way data, is
related to how the components will be used and how the all decomposed array will be
used. Specified examples have been taken for each case to explain these ideas clearly
and the some of the algorithms’ performances are showed on tables and some of them
illustrated on images.
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