In recent years, it has been reported that cardiovascular diseases such as Valvular Heart Disease (VHD) and Chronic Venous Insufficiency (CVI) have become widespread in industrialized countries. If the veins in the leg cannot properly take the blood back to the heart, CVI occurs which is due to the incompetency of the venous valves. Valvular Heart Disease is described as dysfunction or incompetence in one of the four heart valves. In literature, it is seen in clinical observations that there is a need for a more realistic thrombogenesis and mechanical resistance model of prosthesis valves and a more specific hemodynamic-based index/marker for CVI patients. In our project, more realistic designs of prosthesis heart valves (PHV) and venous valves (PVV) are targeted based on a computational hemodynamic model. Because of the high computational complexity of the simulation models, they should be run on high-capacity multiprocessor computer systems using parallel algorithms. Within the scope of this study, to design a more optimal patient-specific valve, various hemodynamic properties and indexes will be examined through the advanced models, and this design will be produced by using the bio-printer method by selecting appropriate biomaterials (polymers) which possess the properties of being biocompatible, long-lasting, minimized clot formation.
Our contribution as a large-scale computational fluid dynamics research group:
Project website: valve.be.itu.edu.tr